logo
最近の検索
データレイクとデータウェアハウス(DWH)の違いとは?
2022.03.01

データの定義からデータレイクとデータウェアハウス(DWH)の違いをわかりやすく解説!

”データ”を取り巻く用語には、様々な用語が存在します。例えば、以下のような用語が存在します。

  • データレイク
  • データマート
  • データウェアハウス(DWH)

これらは、データを蓄積して、分析や機械学習に使うためのものですが、それぞれの役割は大きく異なっています。それぞれ、どのような意味で、どのような役割があるのでしょうか?

本記事では、『データレイク』と『データウェアハウス(DWH)』の違いについてご紹介していきます。

そもそも、データとは?

そもそも、なぜデータをためておく必要があるのでしょうか?

その前にデータについての理解度を統一するために、データの定義を説明します。日本工業規格の「X0001 情報処理用語-基本用語」において、「データ」の用語定義は

「情報の表現であって、伝達、解釈または処理に適するように形式化され、再度情報として解釈できるもの」

とされています。つまり、

  • コンピュータや機械によって出力された事実やその記録
  • 再度読み込みや利用が可能

というもののことを言います。

例えば、サーバーのログ、自動車の走行記録、実験記録、仕事で作成した書類、音楽ファイル、動画ファイルなどが、「データ」に該当します。

データの種類

データの種類は、以下の2種類に分かれます。

  • 構造化データ
  • 非構造化データ

それぞれ、どのような特徴を持っているのか、記載していきます。

構造化データとは?

構造化データとは、エクセルのように「列」「行」があり、「列」「行」にそれぞれ関係性を持っているデータのことです。例えば、天気予報で1時間おきの気温が記載されている表を思い浮かべてみてください。1時間ごとの気温が、「列」または「行」で記載されていると思います。

このように、列または行に関係性があり、「どこに何があるか」が決められているデータのことを、構造化データといいます。構造化データは以下のような特徴があります。

構造化データの特徴1.簡単に分析できる

天気予報で1時間おきの「構造化データ」をみて、何時にどれくらいの気温か、ということは一目でわかります。このように、構造化データは特殊なツールを使わなくても、簡単に分析が行えるのが特徴です。

構造化データの特徴2.加工しやすい

「列」「行」にそれぞれ関係性を持っているため、データの削除や挿入といった加工がしやすいのが特徴です。また、特定の条件を持つデータだけ抽出する、といったことも可能です。

非構造化データとは?

非構造化データとは、メールやPDFファイル、エクセルやワードで作った書類、動画や音楽データなど、日々の業務や生活で作成された雑多なファイルのような、データ単体では意味を持ちますが、それぞれのデータ間に関係性がない(または、関係性が極端に薄い)データのことを指します。

これらのデータについては、構造化データのようにデータベースに格納しにくいという特徴を持ちます。非構造化データは以下のような特徴があります。

非構造化データの特徴1.構造化データと比べ、膨大な量が存在する

先述の通り、世の中のデータの大半は非構造化データです。構造化データのように、「列」「行」にそれぞれ関係性を持たせ、保存しているデータは世の中にはごく少数です。PDFファイルや、エクセル・ワード等で作成されるデータは日々色々なところで生まれ続けているからです。実際に、仕事で構造化データを作成している時間よりも、非構造化データを作成している時間のほうが多いのではないでしょうか?

非構造化データの特徴2.活用方法が定まっていない

PDFファイルや仕事で作成した書類は、それ自体には意味を持ちますが、「データ」という観点でみると、明確な活用方法や分析方法は定まっていません。「後で使うかもしれないのでとりあえず保存はしておくが、データとしての分析対象にもできない」というファイルなのです。

データの活用

構造化データや、非構造化データの活用はなぜ必要なのでしょうか?

理由は以下の3点です。

  • データの分析が容易になり、データ活用競争が起きている。
  • 企業戦略の立案につながる。
  • 顧客の獲得や満足度向上につながる。

それぞれ、以下の見出しで詳しく説明します。

データの活用競争

まず、データの活用がどのような手順で行われるかを説明します。データの活用は、もともと蓄積してあるデータを、コンピュータを用いて加工をおこない、統計的手法やSQL等により、分析します。

従って、データ分析には、データ自体のほかに、以下のツールが必要です。

  • 大量のデータを保存しておくストレージ
  • 大量のデータを高速に処理するコンピュータ
  • 大量のデータを分析する手法

2000年代であれば、データを保存しておくストレージや高速に処理するコンピュータがなく、機械学習など、データ分析を行う手法があってもデータの活用はなかなか進みませんでした。

しかし、近年ではストレージやコンピュータの性能向上により、大量のデータを短い時間で処理できるようになりました。加えて、AWSやGoogle Cloudなどのクラウドの普及により、大企業でなくても、ペタバイト級のデータを手軽に保存し、分析を行えるようになりました。

これにより、現在では、様々な企業が機械学習や統計学の手法を用いて、データの活用を行っています。従って、データ分析が行えない、または行っていない企業はその他の企業の遅れをとってしまい、競争力が減衰していきます。企業の競争力を維持するためにも、データの活用は必要不可欠です。

企業戦略の立案につながる

機械学習の手法を用いてデータを分析を行うと、「分類」「予測」を行うことができます。そして、「予測」の手法を用いると、来客数や売り上げ、仕入れの予測が行えるようになります。実際に電力会社などでは、機械学習を用いて気候や季節から、電力の需要を予測し、発電量を調節する、または他の電力会社から売買電をする、といったことが行われています。

また、過去5年のデータから、今後5年間の予測を行うといったことも、データの分析手法次第によっては可能です。このように、機械学習を用いて予測を行うことで、短期的~中期的な企業戦略の決定に役立てることができます。

顧客の獲得や満足度向上につながる

データ分析で可能なのは企業戦略の立案だけでなく、顧客の満足度向上にもつながります。例えば、機械学習の「分類」を行い、顧客のニーズをとらえるといったことが可能になります。

また、人気の商品に対して「予測」を行い、商品の需要や行列の待ち時間などの予測を行えば、売り切れや長蛇の列により顧客の満足度を下げることなく、人気商品を売りさばくことができます。

データは重要な経営資源

これらから見てわかるように、データを活用し、経営判断や顧客の満足度向上につなげることができます。従って、データは21世紀においては非常に重要な経営資源といえます。

データをうまく活用することで、他社との競争力を維持することができますが、逆に、データをうまく活用できないと、他社との競争に負けてしまうだけでなく、誤った経営判断を下したり、顧客満足度を大きく下げてしまうことになります。

データ蓄積の方法と種類について

これまで、データの種類や重要性について述べてきました。では、経営資源であるデータをどのようにためておけばいいのか、データ蓄積の方法について、記載していきます。

データ蓄積の方法は、主に3つあります。

  • データウェアハウス(DWH)
  • データマート
  • データレイク

その中で本記事では、データレイクとデータウェアハウス(DWH)の違いについて、深掘りしていきます。

データウェアハウス(DWH)とは?

データウェアハウス(DWH)とは、ウェアハウス(倉庫)が語源になっていて、データをすぐに取り出して分析できるように、整理し、保存しておく場所のことです。そのため、保存されるデータは主に構造化データになっています。また、データウェアハウス(DWH)は目的をもって設計がなされています。

たとえば、どのようなデータを格納し、どのようなアウトプットが必要とされるかを、事前に決めて設計します。そのため、データウェアハウス(DWH)は、構築期間が少々長くなるという特徴があります。データの形式や加工方法について、データウェアハウス(DWH)の利用者と十分に認識合わせを行った上に、事前に設計する必要があるためです。

データレイクとは?

データレイクとは、ビッグデータをそのまま(生データのまま)格納できるストレージリポジトリのことです。特に、音声や動画、SNSのログなどを含むあらゆる形式のデータ(非構造化データ)を、そのままの形式で貯めておけるのが利点です。ゆえに、データレイクに保存されるデータは、整理された状態で保存はされません。

また、保存の目的も明確ではありません。「あとで使うかもしれないからとっておこう」というような動機でデータが保存されています。従って、データレイクの構築期間はほとんど時間がかかりません。

例えば、AWSやGoogle Cloudなどのパブリッククラウドで利用できるストレージサービス(S3やCloud Storage)を利用することで、短時間に構築が可能です。

データレイクとデータウェアハウス(DWH)の違い

それではデータレイクとデータウェアハウス(DWH)の違いについて記載していきます。

データウェアハウス(DWH) データレイク
保存されるデータ 構造化データ 非構造化データと構造化データ
構築期間 構築まで長期間要する 短期間で構築が可能
目的 明確な目的をもとに構築がなされる。 目的がなくても構築することがある。
ユーザー ユーザーは特定されていることが多い ユーザーは特定されていないことが多い
必要な容量 データウェアハウス(DWH)と比較して大容量化する傾向がある。
使いやすさ 目的が明確なため、用途が特定されている分使いやすい データの加工が必要で、使いやすさはデータウェアハウス(DWH)に劣る。

データレイクを活用しよう

データウェアハウス(DWH)とデータレイクについて、違いを見てきました。現代では、様々なデータを活用し、様々な用途に利用できます。また、ビジネススピードは日々高速化しています。従って、構築に長期間かかり、目的が決まってしまっているデータウェアハウス(DWH)よりは、データレイクを利用するのがいいのではないでしょうか?

もちろん、利用用途が明確になっているのであれば、データウェアハウス(DWH)を構築するのがベストです。

データレイクを活用するにはクラウドを利用しましょう

データレイクは先述の通り、容量が大容量になる場合があります。場合によってはペタバイト級の容量が必要になる場合があります。ペタバイト級のデータを保存する場合、高性能なストレージ製品が数台~数十台必要になります。加えて、データ分析用のコンピュータも用意する必要があります。このように、データレイクを一から構築するには、多大なコストがかかってしまいます。

従って、AWSやGoogle Cloudのようなパブリッククラウドのサービスを利用してみましょう。先述のように、AWSのS3やGoogle CloudのCloud Storageを利用すれば、大容量のデータレイクがすぐに構築できます。また、Google CloudのBigQueryを利用すれば、構造化データのみになりますが、データの保存のほかに、高速な分析も可能になります。

他の企業との競争力を維持するためにも、クラウドサービスを利用し、データの利活用を積極的に行ってみてはいかがでしょうか?



弊社トップゲートでは、Google Cloud (GCP) 利用料3%OFFや支払代行手数料無料、請求書払い可能などGoogle Cloud (GCP)をお得に便利に利用できます。さらに専門的な知見を活かし、

など幅広くあなたのビジネスを加速させるためにサポートをワンストップで対応することが可能です。

Google Workspace(旧G Suite)に関しても、実績に裏付けられた技術力やさまざまな導入支援実績があります。あなたの状況に最適な利用方法の提案から運用のサポートまでのあなたに寄り添ったサポートを実現します!

Google Cloud (GCP)、またはGoogle Workspace(旧G Suite)の導入をご検討をされている方はお気軽にお問い合わせください。

お問合せはこちら

データ活用にご興味がある方におすすめの記事をご紹介!

最後までご覧いただきありがとうございます。以下では、データ分析に関する記事をピックアップしております。データ分析基盤やGoogle CloudのBigQueryに関して理解を深めたい方は以下の記事がオススメです。

データ分析基盤間の違いを理解したい方にオススメの記事
データ分析の歴史から紐解く!データウェアハウスとデータマートの違いを徹底解説

データ分析基盤の一つであるデータマート概要と設計ポイントをご紹介!

データウェアハウス(DWH)とは?メリットや活用例まで一挙に紹介

クラウドベンダー間のデータウェアハウス(DWH)を比較したい方にオススメの記事
クラウドDWH(データウェアハウス)って何?AWS,Azure,GCPを比較しながら分析の手順も解説!

BigQueryの概要を知りたい方にオススメの記事
超高速でデータ分析できる!専門知識なしで扱えるGoogle BigQueryがとにかくスゴイ!

ビッグデータの保存先はGoogle Cloudで決まり! BigQueryでデータを管理・分析のすすめ

BigQueryの深いところまで知りたい方にオススメの記事
BigQueryで考慮すべきセキュリティとその対策を一挙ご紹介!

【トップゲート主催】ゲーム業界様向けGCP活用のポイント 〜BigQuery編〜



また、弊社トップゲートは Google Cloud Platform™(以下 GCP) のプレミアパートナーとして、専門的な知見を活かし、 Google Cloud 上でのシステム構築からアプリケーション開発まで、ワンストップでご対応することが可能です。クラウドネイティブな環境構築から、新規サービスや PoC、テスト環境などスモールスタートとしての IT インフラとアプリケーションの組み合わせた開発などお客様ごとのご要望に合わせた環境を実現します。

お見積もりだけでも対応可能ですので、お気軽にお問い合わせください!

開発の詳細はこちら



過去の開発事例紹介資料も、公開中!
ご興味ある方は、ぜひDLしてみませんか?
開発事例紹介資料をダウンロードする


メール登録者数3万件!TOPGATE MAGAZINE大好評配信中!
Google Cloud(GCP)、Google Workspace(旧G Suite) 、TOPGATEの最新情報が満載!

メルマガ登録はこちら

ライター

TOPGATE 編集部

Related Article !

View all

クラウドの主流である SaaS とは何か?仕組みやメリットまでわかりやすく解説!

データセンターとは何か?クラウドとの違いや使い分け方法を解説!

データセンターとは何か?クラウドとの違いや使い分け方法を解説!

ビッグデータとは何か?クラウドによるデータ活用事例を紹介!

ビッグデータとは何か?7業種のクラウドによるデータ活用事例をご紹介!

アジャイル開発とウォーターフォール開発との違いとは?自社に合った開発手法の選び方まで徹底解説!

アジャイル開発とウォーターフォール開発との違いとは?自社に合った開発手法の選び方まで徹底解説!

SIer(エスアイヤー)とは何か?業務内容、種類、年収まで徹底解説!

SIer(エスアイヤー)とは何か?業務内容、種類、年収まで徹底解説!

エンジニアってどんな職種?仕事内容、種類、年収を徹底解説!

エンジニアってどんな職種?仕事内容、種類、年収を徹底解説!

Google Cloudの新DBMS、AlloyDB for PostgreSQLを触ってみた Vol.6 (最終回)

Pulumi を Google Cloud で使ってみた

Google Cloudの新DBMS、AlloyDB for PostgreSQLを触ってみた Vol.5

Google Cloudの新DBMS、AlloyDB for PostgreSQLを触ってみた Vol.4

VPN接続の最小構成を例に: アーキテクチャ設計図の効果的な作り方

2023年7月新登場!Google Cloud SQLの最上位エディション「Enterprise Plus」を触ってみた

クラウドファーストとは?クラウド導入のメリットやコストを解説

効率的なデータ活用を実現!データマートの作り方を7ステップでご紹介!

クラウドとオンプレミスの減価償却と会計処理・税務処理について

クラウドとオンプレミスの減価償却と会計処理・税務処理について

コンテナ化とは?仮想化との違いやメリット、デメリット、ユースケースまで詳しく紹介!

クラウドコンピューティングとは何か?仕組みやメリットまで徹底解説!

クラウドコンピューティングとは何か?仕組みやメリットまで徹底解説!

テレワークをするなら知らなきゃ!【Googleのゼロトラスト】BeyondCorp」の特徴、メリットをご紹介!

テレワークをするなら知らなきゃ!【Googleのゼロトラスト】BeyondCorpの特徴、メリットをご紹介!

Google Cloudの新DBMS、AlloyDB for PostgreSQLを触ってみた Vol.3

Google Cloudの新DBMS、AlloyDB for PostgreSQLを触ってみた Vol.2

Google Cloudの新DBMS、AlloyDB for PostgreSQLを触ってみた Vol.1

データベース運用を効率化する SQL とは何か?メリットやデメリット、活用事例まで一挙に紹介!

データベース運用を効率化する SQL とは何か?メリットやデメリット、活用事例まで一挙に紹介!

失敗しないシステム/ソフトウェア開発会社の選び方!判断指標から判断基準まで一挙公開

失敗しないシステム/ソフトウェア開発会社の選び方!判断指標から判断基準まで一挙公開

藤原秀平

目前に迫る! Google Cloud Next ’17 の見どころを TOPGATE エンジニアに訊いてみた

石村真吾

第二弾! Google Cloud Next ’17 の見どころを TOPGATE エンジニアに訊いてみた

新卒エンジニアが日々の学習内容を発信する「ルーキーズブログ」

新卒エンジニアが日々の学習内容を発信する「ルーキーズブログ」を始めます!

REST とは

【GCP入門編・第14回】 Cloud Functions を使ってサーバレスアーキテクチャを体験しよう!

機械学習の勉強歴が半年の初心者が、 Kaggle で銅メダルを取得した話

機械学習の勉強歴が半年の初心者が、 Kaggle で銅メダルを取得した話

Python と Twitter API でリツイートしたユーザーの情報を取得する

Python と Twitter API でリツイートしたユーザーの情報を取得する

目前に迫る!Google I/O 2018 の見どころを TOPGATE エンジニアに訊いてみた (前編)

目前に迫る!Google I/O 2018 の見どころを TOPGATE エンジニアに訊いてみた (前編)

マイコンで CO2 を計測し、サーバーに計測値を投げるシステムを作る

マイコンで CO2 を計測し、サーバーに計測値を投げるシステムを作る

失敗する確率を大幅に減らすために開発依頼の仕方とフェーズごとのチェックポイント

失敗する確率を大幅に減らすために開発依頼の仕方とフェーズごとのチェックポイント

ITシステム開発における自社開発と委託開発の違いと開発の流れについて一挙公開!

ITシステム開発における自社開発と委託開発の違いと開発の流れについて一挙公開!

優れた開発チームが成功の鍵!ITシステム開発のチーム編成方法と新規メンバーの調達方法とは?

優れた開発チームが成功の鍵!ITシステム開発のチーム編成方法と新規メンバーの調達方法とは?

企業のクラウド化が加速中!クラウド導入のメリットとは?

企業のクラウド化が加速中!クラウド導入のメリットとは?

ランニングコスト削減も可能?開発者が知っておきたいインフラ設計のポイント10選

ランニングコスト削減も可能?開発者が知っておきたいインフラ設計のポイント10選

【徹底解説】ウィズコロナにおけるニューノーマルとクラウド

【徹底解説】ウィズコロナにおけるニューノーマルとクラウド

次世代BIツール「Looker」の概要と導入時の注意点をご紹介!

次世代BIツール「Looker」の概要と導入時の注意点をご紹介!

政府が提唱するクラウド・バイ・デフォルト原則とは?企業における導入メリット6選

政府が提唱するクラウド・バイ・デフォルト原則とは?企業における導入メリット6選

クラウドエンジニアとは何か?仕事内容・必要スキル・資格・将来性を徹底解説!

クラウドエンジニアとは何か?仕事内容・必要スキル・資格・将来性を徹底解説!

クラウドで自社にあったカスタマイズは可能か?オンプレ利用者の悩みを解決!

デジタルトランスフォーメーション(DX)とは?概要と5つの事例をご紹介!

デジタルトランスフォーメーション(DX)とは?概要と5つの事例をご紹介!

クラウドベンダーから自社に最適な提案を引き出す!RFP(提案依頼書)の作成方法とは?

クラウドベンダーから自社に最適な提案を引き出す!RFP(提案依頼書)の作成方法とは?

クラウドネイティブ・アプリケーションとは?メリット、活用例、開発方法まで徹底解説!

クラウドネイティブ・アプリケーションとは?メリット、活用例、開発方法まで徹底解説!

【IoTとは?】ビッグデータ、クラウドとの違いや関係性まで一挙紹介

データ分析の歴史から紐解く!データウェアハウスとデータマートの違いを徹底解説

データ分析の歴史から紐解く!データウェアハウスとデータマートの違いを徹底解説

データ分析基盤の一つであるデータマート概要と設計ポイントをご紹介!

データ分析基盤の一つであるデータマート概要と設計ポイントをご紹介!

クラウドアプリケーション開発とは?普及背景やメリットを解説!

クラウドアプリケーション開発とは?普及背景やメリットを解説!

マネージドサービスとフルマネージドサービスの違いとは?メリット・デメリットまで徹底解説!

マネージドサービスとフルマネージドサービスの違いとは?メリット・デメリットまで徹底解説!

ハイブリッドクラウドにした際のネットワーク構成と注意すべきポイントとは?

ハイブリッドクラウドにした際のネットワーク構成と注意すべきポイントとは?

クラウド化の社内合意を得るためには?説得するための5つのポイントをご紹介!

クラウド化の社内合意を得るためには?説得するための5つのポイントをご紹介!

クラウドインテグレーターとは何か?役割やメリット、会社の選び方まで徹底解説!

クラウドインテグレーターとは何か?役割やメリット、会社の選び方まで徹底解説!

【知らないとマズイ】2025年の崖とは?DXの推進にはクラウド化が必要不可欠!

【知らないとマズイ】2025年の崖とは?DXの推進にはクラウド化が必要不可欠!

【片山さんまだ】オンプレミス、クラウド開発における違いとそれぞれの特徴とは?

オンプレミス、クラウド開発における違いとそれぞれの特徴とは?

【実例つき】クラウド移行で失敗する原因と解決策を紹介

【実例つき】クラウド移行で失敗する原因と解決策を紹介

クラウド移行は費用対効果が重要!ROIで効果を見える化しよう!

クラウド移行は費用対効果が重要!ROIで効果を見える化しよう!

【知って納得!】クラウドの高額請求を避けるための5つの確認項目とは?

【知って納得!】クラウドの高額請求を避けるための5つの確認項目とは?

【あなたは知っている?】AI(人工知能)の仕組み、作り方、活用事例まで徹底解説!

エンジニア教育における課題と効果を出すために大切なポイントとは?

データの活用で生産性向上!「BIツール」と「DWH」や「ETL」との違いとは?

【徹底解説!】人工知能(AI)の機械学習と深層学習の違いとは?

【徹底解説!】人工知能(AI)の機械学習と深層学習の違いとは?

レンタルサーバーとクラウドの違いとは?あらゆる観点から徹底比較!

レンタルサーバーとクラウドの違いとは?あらゆる観点から徹底比較!

【万が一に備えよう】クラウドの高額請求が届いたときの対処法とは?

【万が一に備えよう】クラウドの高額請求が届いたときの対処法とは?

クラウドCoEとは?社内のクラウド推進に必要な考え方を理解しよう!

クラウド導入を成功させるための鍵!クラウドアーキテクトを徹底解説!

クラウド導入を成功させるための鍵!クラウドアーキテクトを徹底解説!

クラウドサービス安全利用には理解必須!情報セキュリティマネジメントガイドラインとは?

クラウドサービス安全利用には理解必須!情報セキュリティマネジメントガイドラインとは?

【会社のセキュリティを強化しよう!】専用線と VPN の違いとは?

専用線と VPN の違いとは?違いを理解して会社のセキュリティを強化しよう!

機械学習の仕組みとは?学習方法や活用事例まで徹底解説!

機械学習の仕組みとは?学習方法や活用事例まで徹底解説!

オンプレよりも安全?クラウドがBCP対策に選ばれる理由とは

オンプレよりも安全?クラウドがBCP対策に選ばれる理由とは

「 Society 5.0」とは何か?新しい社会を支える IT 技術を一挙にご紹介!

「 Society 5.0」とは何か?新しい社会を支える IT 技術を一挙にご紹介!

Cloud IoT Core を使用してセンサー情報を Cloud Storage にストリーミングしてみた!

Cloud IoT Core を使用してセンサー情報を Cloud Storage にストリーミングしてみた!

Flutter とは何か?メリット、デメリット、採用しているプロダクト(アプリ)まで一挙にご紹介!

Flutter とは何か?メリット、デメリット、採用しているプロダクト(アプリ)まで一挙にご紹介!

BI ツールとは何か?メリット、デメリット、活用事例まで、一挙に紹介!

BI ツールとは何か?メリット、デメリット、活用事例まで、一挙に紹介!

負荷分散の重要性とは?ロードバランサーのメリット、デメリット、選び方を徹底解説!

負荷分散の重要性とは?ロードバランサーのメリット、デメリット、選び方を徹底解説!

移行コストがボトルネック?コストを抑えながらオンプレからクラウドに DWH を移行する方法とは?

移行コストがボトルネック?コストを抑えながらオンプレからクラウドに DWH を移行する方法とは?

データウェアハウス( DWH )とデータベースとの違いとは?5つのポイントを理解して最適なサービスを選択しよう!

データウェアハウス( DWH )とデータベースとの違いとは?5つのポイントを理解して最適なサービスを選択しよう!

テレワーク導入には必須!テレワークセキュリティガイドラインとは何か?

【古いシステムからの脱却を!】レガシーシステムが抱える5つの課題とは?

【古いシステムからの脱却を!】レガシーシステムが抱える5つの課題とは?

効率的なデータ活用を実現!分析したデータを有効活用するためのテクニックを4ステップで紹介

効率的なデータ活用を実現!分析したデータを有効活用するためのテクニックを4ステップで紹介

システム担当者必見!オンプレミスからクラウドデータベースへの移行で注意すべき11のポイントとは?

システム担当者必見!オンプレミスからクラウドデータベースへの移行で注意すべき11のポイントとは?

政府が提唱する「デジタル・ガバメント実行計画」とは?民間企業への影響まで徹底解説!

政府が提唱する「デジタル・ガバメント実行計画」とは?民間企業への影響まで徹底解説!

API 活用の最前線に迫る! Apigee の3大活用パターン、国内事例、最新情報まで徹底解説!

Looker で次世代のデータ活用を実現!データの民主化における課題と解決法とは?

Looker で次世代のデータ活用を実現!データの民主化における課題と解決法とは?

図解】Google データポータルとは?機能、導入方法、使い方まで徹底解説!

【図解】Google データポータルとは?機能、導入方法、使い方まで徹底解説!

クラウドサーバーとは何か?導入時のポイントや選び方まで徹底解説!

クラウドサーバーとは何か?導入時のポイントや選び方まで徹底解説!

社内のコラボレーションを加速する Googleグループとは?概要、できること、実際の作り方まで徹底解説!

情報漏えいが起こる原因とは?過去事例や防ぐための方法まで徹底解説!

成功する DXの進め方とは?具体的な手順を9ステップでわかりやすく解説!

Chrome OS で動くビデオ会議システム? Google の最新 AI を搭載した Series One を徹底解説!

【経営者必見!】IT 化が進まないことによるリスクとは?進まない理由や推進するための方法まで徹底解説!

【経営者必見!】IT 化が進まないことによるリスクとは?進まない理由や推進するための方法まで徹底解説!

システム導入に反対する現場を説得するには?ステークホルダーマネジメントと大切な3つのポイントを徹底解説!

システム導入に反対する現場を説得するには?ステークホルダーマネジメントと大切な3つのポイントを徹底解説!

【 IT に強い人材を育てる!】「社員の IT リテラシーを向上させる3つの方法」と「 IT リテラシーが低いことによる5つのリスク」とは?

【 IT に強い人材を育てる!】「社員の IT リテラシーを向上させる3つの方法」と「 IT リテラシーが低いことによる5つのリスク」とは?

IT モダナイゼーションとは?種類、メリット、実現するためのポイントまで徹底解説!

IT モダナイゼーションとは?種類、メリット、実現するためのポイントまで徹底解説!

複数プロジェクト構成の Cloud Monitoring がより使いやすくなりました

複数プロジェクト構成の Cloud Monitoring がより使いやすくなりました

Cloud Run 2020 年のアップデートおさらい

Cloud Run 2020 年のアップデートおさらい

「 Lift & Shift 」 とは?クラウド移行の手順を5ステップで解説!

Lift & Shift とは?クラウド移行の手順を5ステップで解説!

スプレッドシートの定期作業を GAS で自動化する

スプレッドシートの定期作業を GAS で自動化する

Cloud SDK のインストールについて

Cloud SDK のインストールについて

iOS アプリと Android アプリを同時に開発!Flutter とは??

iOS アプリと Android アプリを同時に開発!Flutter とは??

Cloud SDK から VM へ安全に接続する方法

Cloud SDK から VM へ安全に接続する方法

データマネジメントとは何か?成功させるための3つのポイントと具体的な進め方を5ステップで解説!

データドリブン経営とは?実現に向けた4ステップや成功事例まで徹底解説!

Excel作業の属人化を回避する方法とは?組織全体のデータ活用が課題解決の鍵!

Cloud Spanner vs Cloud SQL

Cloud Spanner vs Cloud SQL

データ活用に欠かせないデータクレンジングとは?具体的な方法を4ステップで解説!

BYODとは?導入時のメリットとデメリットや導入時に押さえておきたいポイントを徹底解説

効率的なデータ保護を実現! DLP の概要、機能、メリット、活用事例まで一挙に紹介!

効率的なデータ保護を実現! DLP の概要、機能、メリット、活用事例まで一挙に紹介!

【実況ツイートまとめ】 Google Cloud Next '18 トップゲートエンジニアの3日目

【実況ツイートまとめ】 Google Cloud Next '18 トップゲートエンジニアの3日目

【実況ツイートまとめ】 Google Cloud Next '18 トップゲートエンジニアの2日目

【実況ツイートまとめ】 Google Cloud Next '18 トップゲートエンジニアの2日目

【実況ツイートまとめ】 Google Cloud Next '18 トップゲートエンジニアの1日目

【実況ツイートまとめ】 Google Cloud Next '18 トップゲートエンジニアの1日目

画像

GCP Live November 2014

画像

Managed VMs with Docker

画像

GAE Managed VMs誕生までの歴史を振り返る

画像

GAE ModulesをSimpleに使う

画像

Web Componentsを使ってみよう!

画像

Android Wearアプリケーション開発入門

画像

TypeScriptの型定義ファイルを共有しよう!

画像

Google Cloud Platform Live Report

画像

yeomanを用いてWeb開発を楽にする

画像

Topgate Golang勉強会 Report No.1